Attention-based Recurrent Neural Networks for Question Answering
نویسندگان
چکیده
Machine Comprehension (MC) of text is an important problem in Natural Language Processing (NLP) research, and the task of Question Answering (QA) is a major way of assessing MC outcomes. One QA dataset that has gained immense popularity recently is the Stanford Question Answering Dataset (SQuAD). Successful models for SQuAD have all involved the use of Recurrent Neural Network (RNN), and most of them apply the attention mechanism on top of the neural architecture. In this paper, we explore and compare two of such models Match-LSTM and Bidirectional Attention Flow (BiDAF), and propose an ensemble model which combines these two models together. Our models are able to achieve competitive results on the CS224N Test Leaderboard.
منابع مشابه
An Attention Mechanism for Answer Selection Using a Combined Global and Local View
We propose a new attention mechanism for neural based question answering, which depends on varying granularities of the input. Previous work focused on augmenting recurrent neural networks for question answering systems with simple attention mechanisms which are a function of the similarity between a question embedding and an answer embeddings across time. We extend this by making the attention...
متن کاملAsk, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering
The problem of Visual Question Answering (VQA) requires joint image and language understanding to answer a question about a given photograph. Recent approaches have applied deep image captioning methods based on recurrent LSTM networks to this problem, but have failed to model spatial inference. In this paper, we propose a memory network with spatial attention for the VQA task. Memory networks ...
متن کاملDecoding Coattention Encodings for Question Answering
An encoder-decoder architecture with recurrent neural networks in both the encoder and decoder is a standard approach to the question-answering problem (finding answers to a given question in a piece of text). The Dynamic Coattention[1] encoder is a highly effective encoder for the problem; we evaluated the effectiveness of different decoder when paired with the Dynamic Coattention encoder. We ...
متن کاملDual Attention Network for Visual Question Answering
Visual Question Answering (VQA) is a popular research problem that involves inferring answers to natural language questions about a given visual scene. Recent neural network approaches to VQA use attention to select relevant image features based on the question. In this paper, we propose a novel Dual Attention Network (DAN) that not only attends to image features, but also to question features....
متن کاملNo Need to Pay Attention: Simple Recurrent Neural Networks Work!
First-order factoid question answering assumes that the question can be answered by a single fact in a knowledge base (KB). While this does not seem like a challenging task, many recent attempts that apply either complex linguistic reasoning or deep neural networks achieve 65%–76% accuracy on benchmark sets. Our approach formulates the task as two machine learning problems: detecting the entiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017